168

An Experimental Evaluation of Kalman

Filtering

The effectiveness of the stationary form of the discrete Kalman flter
for state estimation in noisy process systems was demonstrated by simulated
and experimental tests on a pilot plant evaporator. The filter was incorpor-
ated into a multivariable, computer control system and resulted in good
control despite process and/or measurement noise levels of 109,. The re-
sults were significantly better than those obtained when the Kalman filter
was omitted or replaced by conventional exponentia] filters. In this applica-
tion the standard Kalman filter was reasonably insensitive to incarrect
estimates of initial conditioq,s or noise statistics and to errors in model
parameters. The filter estima}es were sensitive to unmeasured process dis-
turbances. However this sensitivity could be reduced by treating the noise
covariance matrices R and Q as design parameters rather than noise
statistics and selecting values which result in increased weighting of the
process measurements relative to the caleulated model states.
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Many of the design techniques based on modern control
theory assume that values are available for all the state
variables in the system of interest. However, in most prac-
tical situations, it is not feasible to measure all state vari-
ables and, furthermore, the measurements that are avail-
able often contain significant amounts of random noise
and/or systematic errors. In these situations, on-line esti-
mation techniques can be used to estimate the unmeasured
state variables and to reduce the effects of noise. Sequen-
tial estimation techniques, or filters as they are commonly
called, produce estimates of the true process values from
noisy process measurements and values calculated from a
suitable process model.

The Kalman filter has probably received more attention
in the recent literature than any other state estimation

technique. It has been applied successfully in the aero-
space industry and more recently there have been a number
of theoretical investigations and simulation studies of its
use in process control applications. However, there have
been very few reported applications to actual industrial
processes,

In this investigation the effectiveness of the stationary
form of the discrete Kalman flter is evaluated through
simulation studies and experimental application to a pilot
scale, double effect evaporator. The Kalman filter is de-
rived using a fifth-order state space model of the evaporator
and used to provide state estimates for an optimal multi-
variable feedback controller. The effects of design parame-
ters, errors in the model parameters, and incorrect process
statistics on the performance of the filter are examined.

CONCLUSIONS AND SIGNIFICANCE

The Kalman filter proved to be a practical and relatively
easy to implement addition to the multivariable computer
control system for a pilot scale, double effect evaporator.
Simulation and experimental studies demonstrated that the
stationary form of the discrete Kalman filter provided sat-
isfactory state estimates even in the presence of significant
noise levels, uncertain noise statistics, and significant mod-
eling errors, However, the filter was sensitive to unmea-
sured step disturbances to the process.

The performance of the filter was found to depend on
the accuracy of the assumed process model and the choice
of the weighting matrices used in the design of the filter.
The process model should, subject to reasonable complex-
ity and model order, be as accurate as possible. Fortunately
in this application the filter proved to be relatively insensi-
tive to changes of =259, in key model parameters. Theo-
retically, the weighting matrices should be made equal to
the noise covariance matrices, but in practice noise statis-
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tics are not known exactly and estimates must be used. In
the evaporator application the Kalman filter performed well
when the matrix elements were equal to the actual noise
statistics. However, it was also found that the elements of
the covariance matrices could be treated as design parame-
ters and chosen to improve the filter performance. For ex-
ample, if significant modeling errors or unmeasured process
disturbances are anticipated, it is desirable to make the ele-
ments of the process noise covariance matrix larger than
the actual values that define the process noise statistics.
This strategy leads to a filter design which places greater
weighting on the process measurements and less weighting
on the process model, Consequently, the effects of model-
ing errors and unmeasured process disturbances on filter
performance are reduced.,

In both the experimental and simulation studies, the use
of a Kalman filter in the multivariable control scheme re-
sulted in significantly improved control over the cases
where no filter or a conventional exponential filter was
used. Although not universally applicable, the results of
this experimental investigation should provide useful guide-
lines for future applications of Kalman filtering.
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PREVIOUS WORK

The Kalman filter has received extensive study since
publication of the classic papers by Kalman (1960) and
Kalman and Bucy (1961). Despite a voluminous literature
including numerous applications in the aerospace industry,
it is only recently that the applicability of the Kalman filter
and related nonhinear filters to chemical engineering prob-
lems has been demonstrated. However, the chemical en-
gineering applications to date have typically consisted of
si]mulntion studies involving relatively simple process mod-
els.

The literature includes evaluations of several nonlinear
filters such as the extended Kalman flter for state and
parameter estimation. Simulation studies include applica-
tions to continuous stirred tank reactors by Seinfeld et al.
(1989), Seinfeld (1970), and Wells (1971); to tubular
and packed bed reactors by Gavalas and Seinfeld (1969),
Joffe and Sargent (1972), McGreavy and Vago (1972),
and Vakil et al. (1972); to héht exchangers by Coggan
and Noton (1970), and Coggan and Wilson (1971b); and
to a basic oxygen furnace by Wells (1970). In several of
these studies, such as those by Seinfeld (1970) and Wells
and Larson (1870) the filters were implemented as part
of a feedback control scheme and resulted in significantly
better control. The feasibility of implementing Kalman
filters on small process control computers has heen demon-
strated by Coggan and Wilson (1971a).

Goldmann and Sargent (1971) have recently reported
a detailed study of the factors affecting the performance
of the Kalman flter for two simulated chemical processes.
The authors considered only measurement noise in their
simulations but investigated the sensitivity of the tech-
nique to errors in the design matrices, plant modeling
errors, and autocorrelated measurement noise.

Only a few industrial applications of Kalman filtering
have been reported in the field of process control, Astrém
(1970), Sastry and Vetter (1969), and Sastry et al
(1969) were concerned with applications to papermaking
while Noton et al. (1968, 1970) reported the use of an
extended Kalman filter in parameter and state estimation
for an industrial multireactor system. Wells and Wismer
(1971) have also used an extended Kalman flter to esti-
mate the carbon content in a basic oxygen furnace.

The purpose of this investigation is to evaluate the el-
fectiveness of a Kalman filter in a multivariable computer
control scheme for a pilot scale evaporator. Of particular
interest are several factors which affect the performance
of the Kalman filter including poor estimates of the noise
covariance matrices, unmeasured process disturbances,
poor initial state estimates, and errors in the model param-
eters. Both simulated and experimental results are pre-
sented.

THEORY

The mathematical formulation of both the optimal con-
trol problem and the optimal estimation problem is well
known and has been presented in texts and publications
such as those by Bryson and Ho (1969) and Athans
(1971). General reviews of filtering theory have been pre-
sented by Bucy (1970) and Rhodes r{1971); of ]l;ast
squares theory by Swerling (1971); and of the Linear-
Quadratic-Gaussian Problem by Mendel and Gieseking
(1971). The following is a summary of the derivation of
the discrete, stationary, standard Kalman filter used in this
work.

Consider the discrete, linear, deterministic time-invariant
process model in Equations (1) and (2):

x[(k + 1)T] = @ (T) x(kT) + A(T) u(kT)
+ @(T) d(kT) (1)
y(kT) = H x(kT) (2)

In the optimal control problem, the desi%n objective is to
determine the control policy u(kT), k=0,1,2...N,
which minimizes a performance index such as the widely
used quadratic performance index:

] = xT(N) S x(N)

N~-1

+ Z [xT(k) Qi x(k) + uT(k—1) Ryu(k—1)] (3)
k=1

where N, Q;, R, and § are design parameters which must
be specified a priori and x(k) is used to denote x(kT) etc.
If the optimal control policy which minimizes this per-
formance index is denoted by u®(k), the optimal control
law is given by

u®(k) = Kea(k) x(k) (4)

where the time-varying feedback control matrix Kep(k)
can be obtained from the solution of a matrix Ricatti equa-
tion (Bryson and Ho, 1989). However, an important sim-
plification occurs if control over an infinite period of time
is assumed [that is, N— o in Equation (3)]. In this
special case, the controller matrix Krp(k) in Equation (4)
becomes a constant matrix and the optimal control law is

u®(k) = Krp x(k) (5)

The control law in Equation (5) is attractive for on-line
computer control calculations since only a single, time
invariant matrix, Krp must be stored rather than a se-
quence of N time-varying matrices as in Equation (4).

In order to implement the optimal control laws defined
by Equations (4) and (5), current values of all n state
variables are required. If it is not feasible to measure all
state variables (the usual case), then some type of state
estimation technique is necessary.

In the optimal estimation problem, the objective is to

calculate state estimates Q(k) from noisy measurements of
the input and output variables such that the estimates
minimize a specified performance index. It can be formu-
lated as follows. As the stochastic process of interest, con-
sider the deterministic process model of Equations (1)
and (2) with the inclusion of random process noise w (k)
and measurement noise v(k), such that

x(k+ 1) = @ x(k) + & u(k) + & d(k) + T w(k)
(8
y(k) = Hx(k) + v(k) M

If it is assumed that v(k) and w(k) are zero-mean, un-
correlated white-noise sequences, then the covariance
matrices satisfy

cov [w(k), w(j)] = E[w(k) wT()] = Q(k) & (8)
cov [v(k), v(/)1 = E[v(k) vT())] = R(k) & (9)
cov [w(k), v(j)] = cov [v(k), w(/)]1 =0 (10)

where 8, is the Kronecker delta and Q(k) and R(k) are
the covariance matrices for the process noise and measure-
ment noise, respectively.

The performance specifications for a suitable state esti-
mation algorithm (filter) include:

1. That it produce a sequential estimate of the state
x(k) which is linear in the measurement y(k) and is up-
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dated as each new set of measurements is obtained, and
2. The flter output Ix\(k) be a minimal variance estimate
in the sense it minimizes the following performance index:
A A
J = E{[x(k) —x(k)]7 [x(k) ~x(k)]} (11)
The solution to this optimal estimation problem is the
Kalman filter:
A = —
x(k) = x(k) + K(k) [y(k) —H=x(k)] (12)

where x{k) is calculated from the deterministic model
using the state estimate plus the measured process inputs
from the previous time interval, that is,

K =®Xk—1)+Auk—1)+ @ d(k—1)
.8 (13)

L
Although different in notation and form, Equations
(12) and (13) are equivalent to those presented by Sage
and Melsa (1971). Assuming that the process is statisti-
cally stationary (that is, Q and R are constant matrices)
the gain matrix K(k) can be calculated from the following
recursive relations:

K(k) = P(k) HTR~! = M(k) HT (H M(k) HT + R) !

(14)
M(k+1) =@ P(k) ®"+ T Q" (15
P(k) = (I - K(k) H) M(k) (18)

and the assumed initial conditions:

M(0) = P(0) = E{[x(0) — %(0)] [x(0) — x(0)17}
(17)

Starting with the initial conditions in Equation (17),
Equations (14) to (16) are evaluated in a sequential
manner until K(k) converges to a constant value, K. If it
is assumed that the observation time NT is long compared
to the dominant time constants of the process, then the
following stationary form of Equation (12) may be used:

x(k) =x(k) + K [y(k) — Hx(k)]  (18)

where K is the limiting solution of Equations (14) to (16)
ask—» oo,

There is a significant practical advantage in using the
stationary version of the Kalman flter since only one
matrix K need be stored instead of a large set of matrices
{K(k)}. A further consequence of using the stationary
form of the flter is that the covariance of the error in the
initial state estimate P(0) has no effect on the gain matrix

Finally, it should be noted that according to the Sep-
aration Theorem (Bryson and Ho, 1969), the optimal con-
trol policy for the stochastic system in Equations (8) and
(7) consists of the optimal control law for the determin-
istic system [Equation (4) or (5)] with x(k) replaced

by the optimal estimate ’x\(k) from the Kalman filter. That
is,
A
u® (k) = Krp x(k) (19)
The Separation Theorem is valid if both the process and

measurement noise are Gaussian, an assumption which
has not been necessary up to this point.

® A sch e di

DESCRIPTION OF PROCESS AND PROCESS MODEL*

The pilot plant evaporator used as the subject of all the
simulated and experimental investigations reported in this
paper is a double-effect unit and is normally operated with
a feed rate of approximately 2.27 kg/min of 3% aqueous
triethylene glycol. The primary control objective is to main-
tain the prozﬁxct concentration C2 at a constant value of
approximately 10% in spite of disturbances in the feed
flow rate F, the feed concentration CF, and/or the feed
temperature TF. The liquid holdups W1 and W2 must
also be maintained within acceptable operating limits. The
primary control, or manipulated variables, are the inlet
steam flow S, the bottoms flow from the first effect Bl, and
the product flow from the second effect B2. The unit is
heavily instrumented and can be controlled either by con-
ventional electronic instruments or by an IBM1800 digital
computer. When single variable controllers are used the
normal configuration is to control C2 by manipulating S,
W1 by Bl and W2 by B2. In state space terminology the
control problem is to maintain the state vector x (or al-
ternatively the output vector y) equal to the desired value
in spite of disturbances d by manipulating the control
vector u.

A fifth-order state space model of the evaporator was
derived by Newell and Fisher (1972a) based on linearized
material and energy balances. The discrete model equa-
tions are of the form given in Equations (1) and (2) and
are expressed in terms of normalized perturbation variables
(see Appendix). The definitions of the process variables
and their normal steady state values are in the Notation.
Of the five state variables in this model, only the first ef-
fect concentration C1 is not measured.

The process noise vector w in Equation (8) was as-
sumed to consist of six elements corresponding to the
three disturbances d and the three manipulated variables
u. For the simulation studies described in the next section,
each element of w and v in Equations (6) and (7) was
assumed to be a Gaussian noise sequence with zero mean
and a standard deviation of 0.1, Thus relatively high
noise levels were considered in this investigation (com-

pare Figure 1).

SIMULATION STUDY

The effect of the following factors on the performance
of the Kalman filter was determined by digital simulation:

1. Different noise covariance matrices, Q and R.

2. Unmeasured process disturbances.

3. Incorrect estimates of the initial state.

4. Errors in model parameters.

In both the simulation and experimental studies, diago-
nal Q and R matrices were assumed with each matrix hav-
ing equal diagonal elements. That is,

Q=gqJ, and R=r]; (20)

The physical interpretation of the Q and R matrices in
Equation (20) is that the noise levels of the individual
signals are identical and statistically independent. Once
the ratio r/q is specified, the Kalman filter gain matrix K
is uniquely determined by the asymptotic solution of Equa-
tions {14) to (18). Hence in the following discussion, this
ratio rather than the absolute values of ¢ and r will be
cited. Gaussian noise sequences with standard deviations
of 0.1 were used in all simulation runs, and hence the
theoretically correct value of /g was 1.0.

The effectiveness of the Kalman filter in providing esti-
mates of the entire state vector from noisy measurements

of the p is ilable in Newell et al.

(1972 a, b, ¢).
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is illustrated by Figure 1. The simulated responses are from
the deterministic model defined by Equation (1) and the
parameter matrices in the Appendix. Except for C2, which
was 30% low, the initial states used for both the simula-
tion runs and the Kalman filter derivation were the normal
steady state operating conditions defined in the Notation
section and by arrow heads on the vertical axis, Both proc-
ess and measurement noise were added but the control
and disturbance vectors were identically zero. The actual
values of the state variables (which include the effect of
the process noise w) are shown by the solid curves in
Figure 1. The state estimates from the Kalman filter (short
dashes) are very close to the actual states and represent
a consicerable improvement over the unfiltered data. This
improvement was expected since the simulation was based
on the same model used in designing the Kalman flter
(that is, no modeling errors) and the noise covariance
matrices were set equal to the theoreticaﬂ&lcorrect values
(that is, r/q = 1). The gain-matrix for this flter is also
included in the Appendix.
Effect of Using Incorrect Values for the Noise Covariance
Matrices

Given accurate information concerning noise statistics,
the noise covariance matrices Q and R can be set to their
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Fig. 2. Simulated open-loop evaporator responses. Datg in the top

half shows that the filter output becomes smoother and closer to

that of the deterministic model s r/q increases, Dot in the bottom

half shows that errors in the filter estimate coused by incorrect

estimates of the initial state are eiiminated during o single tronsient
response.

theoretically optimal values, However, accurate statistical
information is rarely available in practice and it is useful
to know to what extent incorrect values of R and Q affect
filter performance. The consequences of using an incorrect
value of 7/q in designing a Kalman Slter for the evaporator
can be seen by comparing the filter estimates plotted in
Figures 1 and’ the top haif of Figure 2. As r/q changes
from 0.25 to 4.0, the estimated response becomes closer to
the deterministic model response. ’Ignis follows since a large
value of r/q implies relatively large measurement noise
levels and small process noise levels; conse uently, the
resulting filter gain matrix K will have small e?ements and
the estimated response will be close to the deterministic
model response as is evident from Equation (18).

Effect of Poor Initial State Estimates

The lower half of Figure 2 shows the effect of an in-
accurate initial state estimate on the performance of the
Kalman filter. The deterministic model response was
started at the correct initial state and since u = d = 0,
the model responses remained constant. The Kalman filter
provides satisglctory state estimates of the four state vari-
ables that were initialized to the correct values, and the
C2 estimate gradually approaches the true value from an
initial estimate of C2 which was 30% below the true
value, Thus the filter estimates are reasonable after the
transient due to the poor initial state estimate,
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unknown ( d) disturb produce significont errors in the

filter estimates, The doto in the bottom haif show that this error

con be reduced by decreasing the r/q ratio (but the output is
noisier).

Effect of an Unmeasured Disturbance

Measured disturbances do not normally cause any diffi-
culty because they can be introduced into the Kalman filter
as part of the disturbance vector d in Equation (13). Un-
measured disturbances affect the measured process out-

puts y but have no effect on the state x, calculated from
Equation (13). If K H in Equation (18) is equal to the
identity matrix I, then this causes no problems. For the
other extreme where K = 0 the filter outputs would never
reflect the influence of the unmeasured disturbance. In
practical applications the errors caused by unmeasured dis-
turbances will lie between these two limits und will be
determined by the magnitude of the elements of K, that is,
by the choice of Q and R.

The effect of an unmeasured 30¢; step change in feed
composition is shown in Figure 3. In the top set of curves
in Figure 3, the theoretically appropriate value of r/g = 1
is used in the filter design. The state estimates are satis-
factory when the step change in feed composition is known
but are significantly in error when the filter is unaware of
the disturbance. The bottom set of curves in Figure 3
indicates the effect of the same disturbance when different
values of r/q are used in designing the Kalman flter. For

r/q = 100, the state estimates are very poor due to a K
matrix with large elements. By contrast when /g = 0.01,
the elements of K are relatively small and although the
state estimates are somewhat noisy, they correctly reflect
trends in the state variables.

These results indicate that it may be advantageous to
make the elements of Q artificially large (that is, r/q
small) to accommodate unmeasured disturbances (and/or
process nonlinearities or modeling errors).

An altemative strategy for alleviating the effects of
unmeasured disturbances is to estimate the disurbances on-
line, This can be achieved by augmenting the state vector
with the disturbance variables and designing a Kalman
filter for the augmented system (Sage and Melsa, 1971).
This approach, which can also be used to deal with mea-
surement bias and drift, is the subject of a current study
by the authors.

Effect of Errors in Model Parameters

A series of simulated runs were also made to determine
the effect of model accuracy on the performance of the
Kalman filter. This was done by arbitrarily specifying val-
ues for parameters (such as the holdups, W1 and W2)
that were 259% above or below the true values and re-
calculating the coefficient matrices in the state space form
of the model [Equations (1) and (2)]. These new (er-
roneous) models were then used as a basis for calculating
new flter designs, that is, new values of K for Equation
(18). Simulated responses were then obtained by apply-
ing these different Kalman filter designs to the same (ac-
curate) process model. In general it was found that
changes of =+ 25¢% in W1,, and W2,, did not produce any
noticeable changes in the filter estimates, Hence it was
concluded that, in this application, the filter performance
was not sensitive to changes in these model parameters.

Closed-Loop System

A series of closed-loop simulation runs was performed
in order to evaluate the effectiveness of Kalman filters in
multivariable feedback control systems. The state estimates
produced by the Kalman filter were used in the multivari-
able control law defined by Equation (19). The optimal
feedback matrix Krg used in this work is given by Equa-
tion (21).

1078 —1.61 -—-482 0 —19.57
Kep = 5.35 0.38 055 0 12.49
7.52 127 0.18 24.61 32.69

(21)

The performance of the Kalman filter in this optimal
control scheme when process and measurement noise occur
is illustrated in Figure 4. When the control calculations
are based on unfiltered noisy measwements (o = 0.1), the
closed-loop response to a 20°; step change in feed flow
rate conlains unacceptable oscillations (compare solid
curves at top). By contrast, as shown by the curves in the
center of Figure 4, when the Kalman flter is designed
using the correct values of the noise statistics and when
the disturbance is measured, then the system response is
much smoother and closer to the deterministic model re-
sponse. 1t the feed flow disturbance is not measured and
the same filter is used, satisfactory control of C2 results
but W1 drifts badly (data not plotted). Fortunately, the
effects of unmeasured disturbances on the filter estimates
can be alleviated as discussed previously by choosing
smaller values of r/q. In Figures 4 to 7 the arrow heads
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on the horizontal axis denote the start of a step disturb-
ance.

EXPERIMENTAL STUDY

The conclusions derived from the simulation studies
were confirmed by experimental studies carried out on the
pilot scale, double effect evaporator. Since the actual mea-
surement and process noise levels in the evaporator are
relatively low (o = 0.01 and 0.02 respectively), zero-mean
Gaussian noise with ¢ = 0.1 was added to the output mea-
surements in order to provide a more severe test of the
Kalman filter. The filter for the experimental study was
designed using a value of 7/q = 25 which corresponds to
assumed process and measurement noise levels of o =
0.02 and 0.10, respectively. The gain matrix for this Kal-
man filter is included in the Appendix. Details concerning
the implementation of multivariable computer control tech-
niques to the evaporator have been presented elsewhere
(Newell et al.,, 1972b, ¢; Hamilton, 1972).

Experimental open-loop response data for a — 30% step
change in feed composition are shown, along with the
corresponding filter estimates, in Figure 5. It should be
noted that the experimental responses plotted in Figures
5 to 7 do not include the artificial Gaussian noise that was
added to the measurements prior to the estimation and
control calculations. When the Kalman filter is aware of
the step disturbance, excellent state estimates result, as
illustrated in the top half of Figure 5. However, when the
disturbance is not measured a Kalman flter designed using
r/q = 25 gives very poor estimates of the actual states.
The estimates are improved, but noisier, when smaller r/ q
values are used as illustrated in the bottom half of Figure 5.

Experimental closed-loop responses with and without
artificially added measurement noise are shown in Figure
6 for optimal feedback control using the gain matrix of
Equation (21). In the noise-free run (bottom half), noise
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Fig. 6. Experimental closed-ioop evaporator responses to 20% step

changes in feed fiow demonstroting the detrimentai effects of in-

creased measurement noise on the muitivariabie computer controi-
schemes (compare Figure 4).
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Fig. 7. Experimental closed-loop evaporator responses to 20% step
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Figures 5 and 3).

was not added to the measurements and excellent control
was maintained in spite of two 20% feed flow disturb-
ances. However, when unfiltered noisy measurements are
used, the evaporator response exhibits excessive oscillations
and is unsatisfactory as shown by the data in the top half
of Figure 8. The control variables 4, are not plotted but
were very noisy as would be expected.

If a Kalman filter is used, the detrimental effects of noise
can be greatly reduced as illustrated in the top part of
Fligure 7. Here the C2 and W1 responses represent a sig-
nificant improvement over the noisy responses in Figure 6
where no filter was used. However, if the filter design is
based on a r/q value of 25 (which is the theoretically cor-
rect value) an unmeasured feed flow disturbance results
in poor control (compare middle portion of Figure 7). A
filter designed using a smaller value of 7/q is less serious!
affected by unmeasured disturbances. For example, as il-
lustrated in the bottom part of Figure 7, an r/q ratio of
0.25 produces results that are a reasonable compromise
between the oscillations in Figure 8 (top) and the sensi-
tiviti; to disturbances in Figure 7 (center).

Thus the experimental results support the conclusions of
the simulation studies concerning the effectiveness of the
Kalman filter and demonstrate the utility of treating the
R and Q matrices as design parameters tgat can be speci-
fied by the designer to tailor the process response to his
specifications.

EXPONENTIAL FILTER

For comparison with the Kalman filter, simulation and
experimental studies were also carried out using an expo-
nential flter of the type commonly available in commercial
Direct Digital Control (DDC) programs.

An exponential or RC filter reduces noise in a set of

measurements by combining the present measurement y

and the previous estimate )/'\ in a fixed proportion specified
by the user. The scalar filter equation is

Bk + 1) = (k) + alyi(k + 1) — Ji(k)] (22)

Normally each filter constant a; is assigned a value be-
tween zero and one since a value of one corresponds to no
filtering and a value of zero corresponds to total filtering
in which the measurements are not used. In selecting a
filter constant for the exponential filter, a trade-off is in-
volved since increasing the value of a; increases the de-
gree of filtering but also increases the dynamic lag intro-
duced by the filter. It is important to realize that the
exponential filter merely provides signal conditioning and
does not furnish any information about unmeasured state
variables.

The experimental and simulation results in Figure 4 pro-
vide a comparison of the closed-loop control resulting from
the use of either a Kalman filter or an exponential filter in
a multivariable contro] scheme. It is apparent that the Kal-
man filter provides better control of the primary controlled
variable C2,
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NOTATION

d
E
H
I

disturbance vector, p X 1

expected value

constant coefficient matrix

identity matrix, | X I

identity matrix, s X s

performance index for control problem

time increment counter

gain matrix for Kalman filter

teedback control matrix

time increment counter

dimension of output vector

variance matrix

dimension of control vector

indicator of final time period

dimension of state vector

error covariance matrix

dimension of disturbance vector

process noise weighting matrix

state weighting matrix in control problem
Pprocess noise covariance, see Equation (20)
measurement noise weighting matrix
contro] weighting matrix in control problem
measurement noise covariance, see Equation (20)
final state weighting matrix in control problem
dimension of process noise vector

discrete time interval

control vector,m X 1

measurement noise vector, [ X 1

process noise vector, s X 1

state vector,n X 1

output measurement vector, ! X 1
covariance

-

n
tn
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cov

Greek Letters
a = coefficient scalar in the exponential filter equation
' = coefficient matrix of the process noise
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a control coefficient matrix
® = disturbance coefficient matrix
o standard deviation
< transition matrix

Superscripts

° = indicates optimal value of variable
T = matrix (vector) transpose

—1 = matrix inverse

- = indicates model calculation

A = indicates estimated variable

Process Variables
State vector, x:
W1 = first-effect holdup, 20.8 kg

Cl = first-effect concentration, 4.599, glycol

Hl = first-effect enthalpy, 441 k]/kg

W2 = second-effect holdup, 19.0 kg

C2 = second-effect concghtration, 10.119 glycol
Control vector, u; *

S = steam, 0.91 kg/min

Bl = first-effect bottoms, 1.58 kg/min

B2 = second-effect bottoms, 0.72 kg/min
Disturbance vector, d:

F = feed flow rate, 2.26 kg/min

CF = feed concentration, 3.29 glycol

HF = feed enthalpy, 365 k]/kg
Output vector, y:

yT = [WI], Hl, W2, C2]
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APPENDIX

State Space Evaporator Model
The model is of the form of Equations (1) and (2) with the
elements of x, u, d and y defined as normalized perturbation

variables, for example,
— w1 - wi,,

X1 =
i Wi,

where W1y, is the normal steady state of W1. Previous evap-
orator studies by Newell and Fisher (1972h) have shown that
a discrete time interval of T = 64 seconds gives satisfactory
control. The coefficient matrices for T = 64 seconds are

10 —-0.0008 —00912 0 0
0 0.9223 00871 0 o

oo =| 0 —00042 04377 0 0
0 —00009 —0.1052 1.0 00001
0 0.0391 0.1048 0 0.9603
—0.0119 —0.0817 0
0.0116 0 0
a= 0.1569 0 0

—0.0137 0.0847 —0.0408
0.0137 —0.0432 0
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0.1182 0 —0.0050 -137. —6.83 —183

— 0.554
—0.0351 0.0785 0.0049 —244 526 — 7.76 20.8
® = | —0.0135 -—0.0002 0.0662 P 1 ;
00012 0 —0.0058 =5o| — 88 34 — 576 598
—0.0019 0.0016 0.0058 —18.3 —5.76 903 —31.3
— 0.554 598 -313 367 )
LEM0. 0Nl OR RO For r/q == 25:
H=1(0 0 1 0 0 200 —0339 —1.67 0422 )
0 0 0 1 o0 -~2,17 0.248 —0.6839 141
1
R O R R =—| —0339 144 0284 0284
1000
—~1687 —0284 204 —2.48
Kalman Filter Gain Matrices 0422 0284 —2.48 3.87
M ip ived October 10, 1973; revision received March 20
forr/qg = 1; and accepted April 5, 1873.




